Vol. 3 No 1 was published on March 20, 2019. | 33 articles were submitted, 12 articles were accepted, 8 articles were rejected and 13 articles are being reviewed | Clarivate Analytics | Higher Attestation Commission of Russia | Control Committee in Education and Science of the Republic of Kazakhstan |

Changing the structure and phasestates and the microhardness of the R6M5 steel surface layer after electrolytic-plasma nitriding

Number 3_Vol.2

AUTHORS: B.K. Rakhadilov, Sh.R. Kurbanbekov, M.K. Kilishkhanov, A.B. Kenesbekov

DOI: 10.29317/ejpfm.2018020307

PAGES: 259 - 266

DATE: 2018-09-26


The article examines the changes of the structural-phase states and the microhardness of the R6M5 steel surface layer after electrolytic-plasma nitriding. It is found that after electrolytic-plasma nitriding of the R6M5 steel surface, diffusion layer is formed, which is a nitrogen martensite. The phase composition of the diffusion layer varies depending on the nitriding temperature. An increase of R6M5 steel microhardness, depending on structural-phase state, is found out. The main factor, influencing the increase of microhardness of R6M5 high-speed steel with electrolytic-plasma nitriding, is the formation of nitrogen martensite with monophasic nitride Fe4N (g′ - phase), as well as the formation of fine inclusions, hardening phases in the surface layers.


Microstructure, microhardness, nitriding, phase composition, high-speed steel.


[1] A.S. Vereshhaka, Rabotosposobnost’ rezhushhego instrumenta s
iznosostojkimi pokrytijami (Mashinostroenie, Moskwa, 1993) 336 s. (In Russian)
[2] S.N. Grigor’ev, Tehnologicheskie metody povyshenija iznosostojkosti
kontaktnyh ploshadok rezhushhego instrumenta (TNT, Staryj Oskol, 2011) 379 s.
(In Russian)
[3] A. da Silva Rocha et al., Surface and coatings technology 165 (2003) 176.
[4] U. Ion-Dragos et al., Materials testing 55(1) (2013) 47.
[5] S.A. Gerasimov et al., Struktura i iznosostojkost’ azotirovannyhstalej (Izd-vo
MGTU im.N.Je.Baumana, Moskwa, 2002) 48 s. (In Russian)
[6] M. Karimi Zarchi et al., Journal of Materials Research and Technology 2(3)
(2012) 213.
[7] P. Gupta et al., Surf. & Coat. Technol. 25 (2007) 87.
[8] I.V. Suminov i dr., Mir materialov i tehnologij. Tom 1 (Izd. Tehnosfera,
Moskwa, 2011) 464 s. (In Russian)
[9] M.I. Gol’dshtejn, GrachevS.V., VekslerJu.G. Special’nye stali (Metallurgija,
Moskwa, 1985) 408 s. (In Russian)
[10] M.K. Skakov et al., Stanochnyj park 6(105) (2013) 30. (In Russian)
[11] B.N. Arzamasov i dr., Ionnajahimiko-termicheskaja obrabotka splavov
(Izd-vo MGTU im. N.Je. Baumana, Moskwa, 1999) 400 s. (In Russian)
[12] Ju.A. Geller, Instrumental’nye stali (Metallurgija, Moskwa, 1983) 527 s. (In
[13] R. Guenzel et al., Pulsed electron-beam treatment of high-speed steel current
tools: struchire-phase transformation and wear resistance: 1st International
Congress on Radiation Physics, high current electronics and modification of
materials 3 (2000) 3037.
[14] Ivanov Yu. et al., Surface and Coatings Technology 150 (2002) 188.
[15] H.Dzh. Gol’dshmidt, Splavy vnedrenija. Tom 1 (Mir, Moskwa, 1971) 424s.
[16] S.A. Gerasimov et al., MiTOM 1 (2004) 13. (In Russian)
[17] I. Artinger, Instrumental’nye stali i ih termicheskaja obrabotka (Moskwa,
1982) 312 s. (In Russian)
[18] K.B. Usmanov, G.I. Yakunin, Vliyanie vneshnikh sred na iznosistojkost’
rezhushhikh instrumentov (FanUzSSR, Tashkent, 1984) 160 s. (In Russian)

Download file Open file