Vol. 3 No 1 was published on March 20, 2019. | 33 articles were submitted, 12 articles were accepted, 8 articles were rejected and 13 articles are being reviewed | Clarivate Analytics | Higher Attestation Commission of Russia | Control Committee in Education and Science of the Republic of Kazakhstan |


System and process of thermal neutron flux producing by means of an accelerator base electron of 18 MeV

Number 4_Vol.2

AUTHORS: A. Didi, A. Dadouch, H. El Bekkour, O. Jai, F.-Z. Bouhal, M. Bencheikh

DOI: 10.29317/ejpfm.2018020403

PAGES: 315 - 325

DATE: 2018-12-24


ABSTRACT

Neutrons are produced in accelerators by irradiating heavy targets with an electron or proton beam. Produced neutrons are of high energy. The purpose of our work is optimization the neutron flux by MCNP-6 code for production the thermal neutron flux using a moderator and for convertation the fast neutron flux into a thermal neutron flux. In this article, we are interested in a thermal neutron flux due it is useful for method of neutron activation analysis. In conventional sources, the moderator is usually a large volume of water or paraffin around the source. Initially, fast neutrons have energy above 1 MeV, and then slow down to energies below 1 eV.


KEYWORDS

MCNP-6, Accelerator of particles, electron beam, neutron flux.


CITED REFERENCES

[1] M.A. El-Absy et-al, Sep. Purif. Technol. 71 (2010) 1-12.
[2] A.S. Elom Achoribo et.al., Appl. Rad. Isotop. 70 (2012) 76-80.
[3] O.Yu. Kochnov et al., Nuc. Ene. Tech. 1 (2015) 213-221.
[4] A. Golabian et al., Journal of Applied Radiation and Isotopes 131 (2018) 62-66.
[5] A. Didi et al., Int. J. Pharm. Pharm. Sci. 8 (2016) 327-331.
[6] A. Didi et al., Nuclear Engineering and Technology 49 (2017) 787-791.
[7] A. Didi et al., Moscow University Physics Bulletin 72 (2017) 460-464.

[8] A. Didi et al., Moscow University Physics Bulletin 72 (2017) 465-469.
[9] F. Tabbakh, Journal of Nuclear and Related Technologies 9 (2012) 17-22.
[10] V.N. Starovoitova and L. Tchelidze, Appl Radiat Isot. 85 (2014) 39-44.
[11] A. Avetisyan et al., Nuclear Medicine and Biology 47 (2017) 44-47.
[12] S. Howard et al., Applied Radiation and Isotopes 96 (2015) 162-167.
[13] K. Abbas, Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment 601 (2009)
223-228.
[14] Z.Gholamzadeh et al., Nuclear Engineering and Technology 47 (2015) 875-883.
[15] MCNP-6. Initial MCNP6 Release Overview MCNP6 Version 1.0, Monte Carlo
N–Particle Transport Code System Including MCNP6.1. Los Alamos, New
Mexico: Los Alamos National Laboratory report LA-UR-13-22934 (2013).

[16] MCNP6-X. Monte Carlo N-Particle Code System for Multi particle and High
Energy Application, Los Alamos, New Mexico: Los Alamos National Laboratory
(2013).
[17] IAEA, Handbook of photonuclear data for applications: Cross section and
spectra (TECDOC-1178, Vienna, 2000)
[18] L. Auditore et al., Nucl. Instr. Meth. Phys. Res. B 229 (2005) 137-143.
[19] A. Pazirandeh et al., Appl.Radiat. Isot. 69 (2011) 749-755.
[20] A. F. Tsechanski et al., Nucl.. Instr. Meth. Phys. Res. B: Beam Interactions
with Materials and Atoms 366 (2016) 124-139.
[21] R.P. Lambert et al., Nucl.. Instr. Meth. Phys. Res. 214 (1983) 349-360.

 


Download file Open file