Vol. 3 No 1 was published on March 20, 2019. | 33 articles were submitted, 12 articles were accepted, 8 articles were rejected and 13 articles are being reviewed | Clarivate Analytics | Higher Attestation Commission of Russia | Control Committee in Education and Science of the Republic of Kazakhstan |


Structure study of Al+Al2O3 composite by atomic force microscopy

Number 4_Vol.2

AUTHORS: D.S. Koleukh, A.S. Kaygorodov, S.V. Zayats, S.N. Paranin

DOI: 10.29317/ejpfm.2018020404

PAGES: 326 - 330

DATE: 2018-12-24


ABSTRACT

The structure of a metal matrix composite based on aluminum containing 6, 17 and 24 wt % Al2O3 was studied by atomic force microscopy. The composite was prepared by the method of magneticpulse compaction from aluminum nanopowder obtained by the electric wire explosion method. The samples compacted at 400 ◦ C have more clearly expressed grain boundaries than those obtained at room temperature. The structure of a composite subjected to dynamic plastic deformation is studied.


KEYWORDS

metal matrix composite, scanning probe microscope, atomic force microscopy, electric wire explosion, magnetic pulse compaction, dynamic plastic deformation.


CITED REFERENCES

[1] S. Abrate, The aeronautical journal 103(1029) (1999) 536.
[2] A. Kurzawa et al., Composite Structures 201 (2018) 834.
[3] M. Grujicic, B. Pandurangan, B. d’Entremont, Materials and Design 41 (2012) 380.
[4] A. Tasdemirci, G. Tunusoglu, M. Guden, International Journal of Impact Engineering 44 (2012) 1.
[5] S. Feli, M. E. Aalami Aaleagha, Z. Ahmadi, International Journal of Impact Engineering 37(5) (2010) 561.
[6] K.A. Verma et. al., International Journal of Mechanical Engineering and Technology 8(7) (2017) 1532.
[7] S. Divagar et. al., International Journal of Applied Engineering Research 10(83) (2015) 47.
[8] B. Kerkwijk et al., Advanced Engineering Materials 1(1) (1999) 69.
[9] A.I. Gusev, A.A. Rempel, Nanocrystalline Materials (Cambridge International Science Publishing, 2004) 351 p.
[10] M. Ju. Gutkin, I. A. Ovid’ko, Uspehi mehaniki 1 (2003) 68. (In Russian)
[11] F. Mjett’juz, R. Rolings, Kompozitnye materialy. Mehanika i tehnologija (M.:Tehnosfera, 2004) 408 p. (In Russian)
[12] E. Bonetti et al., NanoStructed Materials 9 (1997) 611.
[13] V.V. Ustinov, N.I. Noskova, Problemy nanokristallicheskih materialov (Ekaterinburg: UrO RAN, 2006) 202 p. (In Russian)
[14] A.R. Andrievskij, I.I. Spivak, Prochnost’ tugoplavkih soedinenij i materialov na ih osnove (Cheljabinsk: Metallurgija. Cheljabinskoe otdelenie, 1989) 368 p. (In Russian)
[15] N. P. Ljakishev, M.I. Alymov, Rossijskie nanotehnologii 1(1-2) (2006) 71. (In Russian)
[16] R.Z. Valiev, I.V. Aleksandrov, Nanostrukturnye materialy, poluchennye intensivnoj plasticheskoj deformaciej (M.: Logos, 2000) 272 p. (In Russian)
[17] Yu.A. Kotov, Journal of Nanoparticle Research 5(5-6) (2003) 539.
[18] V.V. Ivanov et al., Materialovedenie 5 (1997) 49. (In Russian)
[19] V.A. Mironov, Magnitno-impul’snoe pressovanie poroshkov (Riga: Zinatne, 1980) 196 p. (In Russian)
[20] V.V. Ivanov et al., Rossijskie nanotehnologii 1(1-2) (2006) 201. (In Russian)


Download file Open file