Vol. 3 No 1 was published on March 20, 2019. | 33 articles were submitted, 12 articles were accepted, 8 articles were rejected and 13 articles are being reviewed | Clarivate Analytics | Higher Attestation Commission of Russia | Control Committee in Education and Science of the Republic of Kazakhstan |


High resolution gamma-ray spectrometry using GALILEO array

Number 1_Vol.3

AUTHORS: D. Testov, J.J. Valiente-Dobon, D. Mengoni, F. Recchia, A. Goasduff, A. Boso, S. Lenzi, G. de Angelis, S. Lenzi, S. Bakes, C. Boiano, B. Cederwall, G. Colucci, M. Cicerchia, P. Colovic, F. Didierjean, M. Doncel, J.A. Duenas, F. Galtarossa, A. Gozzelino, K. Hadynska-Klek, R. Isocrate, G. Jaworski, P.R. John, H. Liu, S. Lunardi, R. Menegazzo, A. Mentana, V. Modamio, A. Nannini, D.R. Napoli, M. Palacz, G. Pasqualato, M. Rocchini, S. Riccetto, B. Saygi, E. Sahin, M. Siciliano, Yu. Sobolev, S. Szilner

DOI: 10.29317/ejpfm.2019030111

PAGES: 84 - 90

DATE: 2019-03-20


ABSTRACT

The GALILEO  gamma-ray spectrometer has been constructed at the Legnaro National Laboratory of INFN (LNL-INFN). It can be coupled to advanced ancillary devices which allows nuclear structure studies employing the variety of in-beam  gamma-ray spectroscopy methods. Such studies benefit from reactions induced by the intense stable beams delivered by the Tandem-ALPI-PIAVE accelerator complex and by the radioactive beams which will be provided by the SPES facility. In this paper we outline two experiments performed within the experimental campaign at GALILEO coupled to the EUCLIDES Si-ball and the Neutron Wall array. The first one was aimed at spectroscopic studies in A=31 mirror nuclei and the second one at measurements of lifetimes of excited states in nuclei in the vicinity of 100Sn.


KEYWORDS

 Gamma-ray spectroscopy,  gamma-ray spectrometer, nuclear structure, nuclearstate lifetime.


CITED REFERENCES

[1] J.J. Valiente-Dobon et al., LNL Annual report (2014) 79.
[2] D. Bazzacco, Proc. Workshop on Large  gamma-ray Detector Arrays (Chalk River Canada) AECL10613, 376 (1992).
[3] http://tesi.cab.unipd.it/61172/1/Zanon_Irene_tesi.pdf.
[4] D. Testov et al., LNL Annual Report (2015) 105.
[5] D. Mengoni et al., Nucl. Instr. and Meth. A 764 (2014) 241.
[6] N. Cieplicka-Orynczak et al., Eur. Phys. J. A 54 (2018) 209.
[7] M. Rocchini et al., Phys.Scr. 92 (2017) 074001.
[8] C. Muller-Gatermann at al., Nucl. Inst.& Meth. A 920 (2019) 95.
[9] D. Testov et al., LNL Annual Report (2016) 59.
[10] S. Bakes et al., LNL Annual Report (2017) 22.
[11] D. Testov et al., LNL Annual Report (2017) 61.
[12] O. Skeppstedt et al., Nucl. Instr. and Meth. A 421 (1999) 531.
[13] J. Ljungvall et al., Nucl. Instr. & Meth. A 528 (2004) 741.
[14] A. Giaz et al., Nucl. Instr. and Meth. A 729 (2013) 910.
[15] G. Benzoni et al, LNL Annual Report (2015) 84.
[16] M. Bellato et. al., Journal of Instrumentation 8 (2013) P07003.
[17] S.P. Hua et al., Nucl. Inst. & Meth. A 815 (2016) 96.
[18] G.L. Zhang et al., Phys. Rev. C 97 (2018) 014611.
[19] Y.H. Qiang et al., Phys. Rev. C (2019) 014307.
[20] http://www.lnl.infn.it/index.php/en/.
[21] http://tesi.cab.unipd.it/52165/1/tesi_L_Lonardi_Alberto.pdf
[22] D. Jenkins et al., Phys.Rev.C 72 (2005) 031303.
[23] M. Ionescu-Bujor et al., Phys. Rev. C 73 (2006) 024310.
[24] F. Della Vedova et al., AIP Conf. Proc. 764 (2005) 205.
[25] A. Dewald et al., Prog. Part. Nucl. Phys. 679 (2012) 786.
[26] G. Bisoffi et al., Nucl. Instr. and Meth. B 376 (2016) 240.


Download file Open file