Energy transfer and defect formation processes in nano silicon under the influence of epithermal neutrons

Number 3_Vol.3

AUTHORS: A. Garibli

DOI: 10.29317/ejpfm.2019030306

PAGES: 242 - 253

DATE: 2019-09-23


The neutrons scattering and capture cross-section processes has been calculated for natural 28Si , 29Si, 30Si isotopes which are main part of nanosilicon samples when irradiated for 20 hours by epithermal neutron flux. The values of energies has been determined which given to nanosilicon nuclei as a result of scattering processes in the energy intervals of investigated neutrons. The cross-sections of radiation capture process and the amount of 31Si radioactive isotope which can be formed by by 30Si isotope in the energy interval of epithermal neutrons, the parameters of energy supply and ionization processes has been determined by interaction between energy carried of ß - particles which disseminated in evironment and silicon atoms as a result of their ß - decay. The formed defects has been determined in electron structure of nanosilicon under the influence of primary and secondary electron beams. Characterized interaction processes between nanosilicon and gamma rays irradiated from radioactive isotopes in impurities up to 1% in nanosilicon which formed under the influence of neutron flux. As a result of SEM investigation, interaction between surface defects inherent to nanoscale systems and O2, H2O active components that arranged environment and increasing number of surface oxidation atoms determined under the influence of radiation from radioactive isotopes which are product of radiation capture processes when impact by neutron flux. The progression of agglomeration processes of nanosilicon particles under the influence of secondary radiation processes that caused by neutron flux has also been proved experimentally by SEM investigations. The characteristic of identification and generation processes of paramagnetic defects, that formed as a result of secondary radiation processes investigated by electron paramagnetic resonance spectroscopy method.


neutrons scattering, capture cross-section, electron paramagnetic resonance spectroscopy


[1] Satyendra Kumar et al., Materials Science and Engineering: C 31(2) (2011) 370.

[2] Jun Jie Niu, Jian Nong Wang Physica E: Low-dimensional Systems and Nanostructures 39(2) (2007) 244.

[3] Monuko du Plessis, Sensors and Actuators A: Physical 135(2) (2007) 666.

[4] Kyung S. Shin et al., Surface and Coatings Technology 205(1) (2010) 227.

[5] Qiang Liu et al., Journal of Electroanalytical Chemistry 657(1-2) (2011) 172.

[6] Chang-zhi Shi et al., Sensors and Actuators A: Physical 162(2) (2010) 284.

[7] P. Kumar et al., International Journal of Hydrogen Energy 33(14) (2008) 3938.

[8] A. Gottwald, F. Scholze, Smart Sensors and Mems Intelligent Devices and Microsystems for Industrial Applications (2014) 102.

[9] S.J. Moloi, M. McPherson Vacuum 104 (2014) 51.

[10] C. Elsasser, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 730 (2013) 13.

[11] L. Viererbl et al., Radiation Physics and Chemistry 95 (2014) 389.

[12] R. Klanner et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 732 (2013) 117.

[13] S.F. Jackson et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 752 (2014) 42.

[14] R. Radu et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 730 (2013) 84.

[15] A.N. Klimov, Jadernaja fizika i jadernye reaktory (M. Jenergoatomizdat, 2002) 464 p. (in Russian)

[16] T.V. Golashvili et al., Spravochnik nuklidov-2 (Moskva, 2002) 348 p. (in Russian)

[17] R. Stefepson, Vvedenie v jadernuju tehniku (Moskva, 1956) 518 p. (in Russian)

[18] R. Mjerej, Vvedenie v jadernuju tehniku (Moskva, 1955) 387 p. (in Russian)

[19] K.N. Muhin, Jeksperimental’naja jadernaja fizika (Moskva, 1974) 584 p. (in Russian)

[20] M.A. Jelango, Jelementarnye neuprugie radiacionnye processy (Moskva, 1988) 152 p. (in Russian)

[21] V.P. Kovalev, Vtorichnye jelektrony (Moskva, 1987) 177 p. (in Russian)

[22] A.F. Akkerman et al., Phys.Status Solids B 105 (1981) 461.

[23] A.F. Akkerman et al., Vtorichnye jelektronnoe izluchenie iz tverdyh tel pod dejstviem gamma-kvantov (Moskva, 1986) 165 p. (in Russian)

[24] A.F. Akkerman, I. Barak, IEE Trans.Nucl.Sci 50 (2003) 741.

[25] A.P. Il’in et al., Zhurnal tehnicheskoj fiziki 82(8) (2012) 140. (in Russian)

[26] M.J. Berger et al., Journal of the International Commission on Radiation Units and Measurements 19(2) (1984)

[27] R.N. Hamn, IEEE.Trans.Nucl.Sci 33 (1986) 1236.

[28] J. Koutsky, J. Kosik, Materials Science monogrops Elsever (1994) 79.

[29] G. Pacchioni, L. Skuja, D.L., Proceedings of the NATO Advanced Study Institute on Defects in SiO2 and Related Dielectrics: Science and Technology (Erice, Springer Science & Business Media, Italy, 2000) 117.

[30] Ch.P. Poole, Electron Spin Resonance. A comprehensive treatise on experimental techniques (New York: Dover Publications; Subsequent edition, 1997) 810 p.

[31] M. Jivanescu et al., J. Optoelectron Adv/Mater.9,721 (2007).

[32] W. Fukato et al., Physical Review Letters 92(10) (2004).

[33] M. Jivanescu et al., Nanospec confrence book (Bad-Honnef, Germany 2007).

[34] M. Jivanescu et al., Appl. Phys. Lett. 93 (2008) 023123.

[35] D. Hiller et al., J. Appl. Phys. 107 (2010) 064314.

[36] D. Hiller et al., Phys. Rev. B 82 (2010) 9.

[37] S. Agnello, in Nuclear and Condensed Matter Physics (2000) 7.

[38] V. Radulovic et al., Applied Radiation and Isotopes Volume 84 (2014) 57.

[39] G. Zerovnik et al., Ann. Nuc. Energy 63 (2014) 126.

[40] J. Anze et al., Atw. Internationale Zeitschrift fur Kernenergie, 58(12) (2013) 701.

[41] A. Garibli et al., International journal of Modern Physics B 30 (10) (2016) 165040.

[42] D.L. Griscom et al., Kluwer Academic Dordrecht Book 2 (Italy, 2000) 117.

[43] Charles P. Poole, Dover Publications (New York, 1996)

[44] M. Jivanescu et al., J. Optoelectron. Adv. Mater. 9 (2007) 721.

Download file Open file