Vol. 3 No 3 was published on September 23, 2019. | Clarivate Analytics | Control Committee in Education and Science of the Republic of Kazakhstan |


Change of electrophysical properties of the Si(111) and Si(100) surface in the process of ion implantation and next annealing

Number 3_Vol.3

AUTHORS: A.S. Rysbaev, I.R. Bekpulatov, B.D. Igamov, Sh.X. Juraev

DOI: 10.29317/ejpfm.2019030307

PAGES: 254 - 259

DATE: 2019-09-23


ABSTRACT

The change in the electrical properties of the Si(111) and Si(100) surfaces during ion implantation and subsequent annealing was studied. The possibilities of controlling of the electrophysical properties of the Si(111) and Si(100) surface layers by the implantation of ions of alkaline and alkaline-earth elements are analyzed. Some electrophysical properties of semiconductors containing p- and n-structures and the possibilities of their application in electronics are discussed.


KEYWORDS

silicon, implantation, semiconductor, nanosize, surface, silicide, single crystal, ion, dose


CITED REFERENCES

[1] A.A. Eliseev et al., Functional materials (2010) 452. (In Russian)

[2] Hiroshi Iwai et al., International Journal of High Speed Electronics and Systems 20(10) (2005) 1.

[3] N.A. Sobolev et al., Fizika i technika poluprovodnikov 53(2) (2019) 165. (In Russian)

[4] N.I. Pljusnin, Izvestija vysshih uchebnyh zavedenij. Materialy jelektronnoj tehniki 18(2) (2015) 81. (in Russian)

[5] M.G. Mil’vidskij, V.V. Chaldyshev, Fizika i tehnika poluprovodnikov 32(5) (1998) 513. (in Russian)

[6] L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47 (1993) 12727.

[7] A.B. Dmitriev, I.P. Zvjagin, UFN 180 (2010) 821. (in Russian)

[8] A.T. Burkov et al., J. Appl. Phys. 95 (2001) 3229.

[9] J.D. Cressler, The silicon heterostructure handbook: materials, fabrication, devices, circuits, and applications of SiGe and Si strained-layer epitaxy (New York: CRC Press, 2005) 1210 p.

[10] J. Derrien et al., Appl. Surface Sci. 56-58(1) (1992) 382.

[11] R. Jansen, Nature Materials 11 (2012) 400.

[12] C. Chappert et al., Nature Materials 6 (2007) 813.

[13] S.P. Dash et al., Nature 462 (2009) 491.

[14] A. Polman, Nature Materials 1(1) (2002) 10.

[15] D. Dai et al., Light: Science and Applications 1(3) (2012) 1.

[16] G. Chen et al., Integration, the VLSI Journal 40 (2007) 434.

[17] V.J. Sorger et al., MRS bull. 37(8) (2012) 728.

[18] D.I. Tetel’baum, Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo 5(2) (2010) 250. (in Russian)

[19] I.R. Bekpulatov et al., Struktura i fizicheskie svojstva nanorazmernyh plenok silicidov metallov. Monografija (Tashkent: Adabiyot uchqunlari, 2017) 230 p. (in Russian)

[20] A.S. Rysbaev et al., Spring Meeting, Strasbourg (2017) 9.

[21] A.S. Rysbaev et al., Materialy XLV mezhdunarodnoj Tulinovskoj konferencii, Moskva, (2016) 170. (in Russian)

[22] A.S. Rysbaev et al., Tezisy XI mezhdunarodnoj konferencii Kremnij-2016, Novosibirsk (2016) 186. (in Russian)

[23] A.S. Rysbaev, Modifikacija jelektronnoj struktury i svojstv poverhnostnyh sloev monokristallov kremnija implantaciej ionov bol’shih doz. Dokt. dissert. (Tashkent, 2003) 208. (in Russian)

[24] A.S. Rysbaev et al., Technical Physics 59(11) (2014) 1705.

[25] A.S. Rysbaev et al., Tezisy XI mezhdunarodnoj konferencii Kremnij-2016 (Novosibirsk, 2016) 187. (in Russian)

[26] A.S. Rysbaev et al., Materialy V Mezhdunarodnoj konferencii (Samarkand, 2016) 73. (in Russian)

[27] I.R. Bekpulatov, Poluchenie nanorazmernyh pljonok silicidov metallov i ih fizicheskie svojstva. PhD. dissert. (Tashkent, 2018) 112. (in Russian)


Download file Open file