Vol. 3 No 3 was published on September 23, 2019. | Clarivate Analytics | Control Committee in Education and Science of the Republic of Kazakhstan |


The Gibb’s Free Energy and Magnetic Susceptibility of Samarium Chalcogenides (SmX, X=S, Se and Te)

Number 3_Vol.3

AUTHORS: Dipak Raj Adhikari, Saurav Khatri, Dinesh Kumar Chaudhary, Hari Prasad Lamichhane

DOI: 10.29317/ejpfm.2019030309

PAGES: 269 - 278

DATE: 2019-09-23


ABSTRACT

In the present paper, the magnetic susceptibility have been studied under the effect of pressure at constant temperature in samarium chalcogenides (SmX, X=S, Se and Te). The samarium chalcogenides have predicted the pressure induced structural and electronic transition from NaCl structure (FCC lattice) to CsCl structure (BCC lattice). The f energy level of electrons in the compounds (SmX, X=S, Se and Te) have been shifted towards 5d conduction band due to the influence of pressure at constant temperature. The variation of the magnetic susceptibility under the effect of pressure at constant temperature have been calculated. The calculated values and parameters are in close agreement with the experimental results.


KEYWORDS

Gibb’s free energy, magnetic susceptibility, transition pressure and samarium chalcogenides


CITED REFERENCES

[1] A.K. Sing et al., Phys. Rev. B. 6 (1972) 2513.

[2] J. Neuenschwander, P. Wachter, Physica B. 160 (1990) 231-270.

[3] C.M. Varma, V. Heine, Phys. Rev. B. 11(12) (1975) 4763-4767.

[4] A. Chatterjee et al., Phys. Rev. B. 6 (1972) 2285-2291.

[5] S.P. Chimouriya and D.R. Adhikari, African Physical Review 4 (2010) 0002.

[6] A.P. Gangolves, C. Godart, Eur. Phys. J. B. 87(42) (2014)

[7] M.B. Maple, D.Wohleben, In proceeding of the 19 th Annual Conference on Magnetism and Magnetic Material Boston (1973).

[8] I.A Simirnov, Phys. Stat. Sol. (a) 14 (1972) 361.

[9] D.R. Adhikarietal, Indian journal of Theoretical Physics 59(1) ( 2011).

[10] K. Imura et al., J. Phys. Soc. Jpn 80 (2011) 113704.

[11] C.J. Kang et al., Phys. Rev. Lett. 114 (2015) 166404.

[12] A. Barla et al., J. Phys. Condens. Matter. 17 (2005) 837–848.

[13] J. Neuenschwander, P. Wachter, Physica B. 160 (1990) 231-270.

[14] R.N. Tauber et al., J. Appl. Phys. 37 (1966) 4855.

[15] Y.Z. Pei et al., Nature 473 (2011) 66.

[16] Z.M. Gibbs et al., Applied Physics Letters 103 (2013).

[17] H. Kim and M. Kaviany, Phys. Rev. B 86 (2012).

[18] A. Sousanis et al., Materials 10 (2017) 953.

[19] A. Jayaraman et al., Phys. Rev. Lett. 26 (1970) 1430.

[20] C.M. Verm, V. Heine, Phys. Rev. 11 (1975) 4763.

[21] L.L. Hirst, J. Phys. Chem. Solids 35 (1974) 1285.

[22] D. Varsney et al., Indian Journal Physics 43 (2005) 939.

[23] M.P. Tosi, F.G. Fumi, J. Phys. Chem. Solids 23 (1962) 359.

[24] M.L. Huggins, J.E Mayer, J. Chem. Solids 3 (1935) 637.

[25] J.E. Mayer, J. Chem. Solids 1 (1933) 270.


Download file Open file