92 citations of the journal in the Russian Science Citation Index | Vol. 4 No 2 was published on June 22, 2020. | Clarivate Analytics | Control Committee in Education and Science of the Republic of Kazakhstan |


An analysis of cross-sections of 9Be+28Si interaction in the framework of the double-folding model

Number 4_Vol.3

AUTHORS: A.M. Kabyshev, K.A. Kuterbekov, A.K. Azhibekov, K.Zh. Bekmyrza, A.M. Mukhambetzhan, M.K. Kenzhebek, Ye.K. Sovetkhanov, Zh.A. Yeltay

DOI: 10.29317/ejpfm.2019030404

PAGES: 319 - 329

DATE: 2019-12-20


ABSTRACT

In this paper the experimental data on the differential cross sections for elastic scattering of 9Be ions on 28Si nucleus at the energies of the incident nucleus ranging from 12 to 201.6 MeV were analyzed in the framework of the double-folding model using the Paris NN-potential CDM3Y. A good agreement with the experimental angular distributions of differential cross sections for elastic scattering was obtained and the values of the total reaction cross sections were calculated. When the double-folding potential was used as real and imaginary parts, no manifestation of the threshold anomaly was detected. The reason for such a behavior of the potential can be explained by the presence of break-up and/or transfer channels at low energies.


KEYWORDS

weakly-bound nuclei, threshold anomaly, angular distributions of differential cross sections, total reaction cross sections, double-folding potential.


CITED REFERENCES

[1] G.R. Satchler, Phys. Rep. 199 (1991) 147.

[2] G.R. Satchler andW. Love, Phys. Rep. 55 (1979) 183.

[3] C. Mahaux et al., Nucl. Phys. A 55 (1986) 354.

[4] N. Keeley et al., Nucl. Phys. A 571 (1994) 326.

[5] A.M. Maciel et al., Phys. Rev. C 59 (1999) 2103.

[6] A. Pakou et al., Phys. Lett. B 556 (2003) 21.

[7] M.A. Tiede et al., Phys. Rev. C 44 (1991) 1698.

[8] A. Pakou et al., Phys. Rev. C 69 (2004) 054602.

[9] P.R.S. Gomes et al., Phys. Rev. C 70 (2004) 054605.

[10] S.B. Moraes et al., Phys. Rev. C 61 (2000) 064608.

[11] P.R.S. Gomes et al., Heavy Ion Phys. 11 (2000) 361.

[12] C. Signorini, Eur. Phys. J. A 13 (2002) 129.

[13] C. Signorini et al., Nucl. Phys. A 701 (2002) 23.

[14] R.J. Wooliscroft et al., Phys. Rev. C 69 (2004) 044612.

[15] K.V. Lukyanov et al., Bull. Rus. Acad. Sci. Phys. 72 (2008) 382.

[16] D.T. Khoa, G.R. Satchler, Nucl. Phys. A 668 (2000) 3.

[17] V. Hnizdo et al., Phys. Rev. C 24 (1981) 1495.

[18] O.M. Knyazkov, E.F. Hefter, Z. Phys. A 301 (1981) 277.

[19] I.J. Thompson, Comput. Phys. Rep. 7 (1988) 167.

[20] M.E. Brandan, G.R. Satchler, Phys. Rep. 285 (1997) 143.

[21] Y. Sakuragi et al., Prog. Theor. Phys. 70 (1983) 1047.

[22] L. Trache et al., Phys. Rev. C 61 (2000) 024612.

[23] M. Hugi et al., Nucl. Phys. A 368 (1981) 173.

[24] M.S. Zisman et al., Phys. Rev. C 21 (1980) 2398.

[25] J.S. Eck et al., Phys. Rev. C 21 (1980) 2352.

[26] Yu.A. Pozdnyakov, Phys. Atomic Nuclei 65 (2002) 1827.


Download file Open file