81 citations of the journal in the Russian Science Citation Index | Vol. 4 No 1 was published on March 17, 2020. | Clarivate Analytics | Control Committee in Education and Science of the Republic of Kazakhstan |


Optimal technological modes of ion implantation and following annealing for forming thin nanosized films of silicides
 

Number 1_Vol.4

AUTHORS: A.S. Rysbaev, S.U. Irgashev, A.S. Kasimov, D.Sh. Juraeva, J.B. Khujaniyazov, M.I. Khudoyberdieva

DOI: 10.29317/ejpfm.2020040106

PAGES: 50 - 60

DATE: 2020-03-17


ABSTRACT

The formation of nanosized films of silicides on the surface of Si (111) and Si (100) was studied by the method of low-energy ion implantation. The optimal technological modes of ion implantation and subsequent annealing for the formation of thin nanoscale films of silicides were determined. It is shown that the appearance of new surface superstructures is additional confirmation of the formation of thin silicide films with a single crystal structure.
 


KEYWORDS

silicon, implantation, optimal structure, surface structure, films, spectrum of photoelectrons, zone energy diagram, nanoscale films, surface, silicide, single crystal, ion, dose.
 


CITED REFERENCES

[1] D. Leong et al., Nature 387 (1997) 686-688.
[2] B. Schuller et al., J. Appl. Phys. 94 (2003) 207-211.
[3] E.A. Shteyman et al., FTT 46 (2004) 26-30. (In Russian)
[4] L. Martinelli et al., Appl. Phys. Lett. 83 (2003) 794-796.
[5] Y. Maeda et al., Thin Solid Films 461 (2004) 160-164.
[6] A.S. Rysbaev, Abstract of a doctoral dissertation Tashkent (2003) 34. (In Russian)
[7] R.I. Batalov et al., FTP 35 (2001) 1320-1325. (In Russian)
[8] R. Bayazitov et al., Nucl. Instrum. Methods. 24 (2005) 224-228.
[9] G.G. Galkin et al., Journal of Technical Physics 78(2) (2008) 84-90.
[10] T. Suemasu et al., Thin Solid Films 461 (2004) 209-218.
[11] N.I. Plyusnin, Vestnik DVO RAN 5 (2010) 26-34. (In Russian)
[12] L. Chenga, K. Plog, Molecular beam epitaxy and heterostructures (1989) 68-72.
[13] L. Haderbache et al., Thin Solid Films 184 (1990) 317-327.
[14] N.I. Plyusnin, Materials of Electronic Engineering 18(2) (2015) 81-94.
[15] H.B. Ashurov, Abstract of Doct. Diss. Tashkent (1994) 30. (In Russian)
[16] S.A. Audet, S.E. Wouters, IEEE Trans. Nucl. Sci. 37(1) (1990) 15-20.
[17] A.S. Rysbaev et al., Abstract 8th International Conference. Almaty, Kazakhstan (2011) 350. (In Russian)
[18] A.S. Rysbaev et al., Surface. 12 (2011) 98-104.
[19] V.I. Fistul, FTP 21(6) (1987) 1026-1028. (In Russian)
[20] V.A.Uskov et al., M.: Nauka. (1982) 110-114.
[21] I.A. Popov, FTP. 3 (1996) 466-469. (In Russian)
[22] K.P. Gurov, B.A. Kartashkin, Interdifussion in multiphase metal systems (M.: Nauka, 1981) 120-145.
[23] K.P. Gurov, A.M. Gusak, Physics of Metals and Metallurgy. 53(5) (1982) 842-847. (In Russian)
[24] A.M. Gusak, K.P. Gurov, Phys. Chem. Material Processing. 6 (1982) 109-114.
[25] I.R. Bekpulatov et al., Struktura i fizicheskie svojstva nanorazmernyh plenok silicidov metallov. Monografija (Tashkent: Adabiyot uchqunlari, 2017) 230 p. (in Russian)
[26] A.S. Rysbaev et al., Technical Physics. 59(10) (2014) 1526-1530.
[27] A.S. Rysbaev et al., E-MRS Spring Meeting, Lille, France (2016) P. 2.8.
[28] A.S. Rysbaev et al., Abstract XLVII International Tulin Conference, Moscow, (2017) 136.
[29] A.S. Rysbaev et al., International Symposium, Tashkent. (2016) 351-352.
[30] A.S. Rysbaev et al., International Symposium, Tashkent. (2016) 235.
[31] V.V. Gorganova, X-ray, electron spectra and chemical bonds (1986) 222-290.
 


Download file Open file