81 citations of the journal in the Russian Science Citation Index | Vol. 4 No 1 was published on March 17, 2020. | Clarivate Analytics | Control Committee in Education and Science of the Republic of Kazakhstan |


Phase composition and thermoelectric properties of the nanocomposite alloys NaxCu2-x-yS
 

Number 1_Vol.4

AUTHORS: M.M. Kubenova, M.Kh. Balapanov, K.A. Kuterbekov, R.Kh. Ishembetov, A.M. Kabyshev, Y.Kh. Yulaeva

DOI: 10.29317/ejpfm.2020040108

PAGES: 67 - 85

DATE: 2020-03-17


ABSTRACT

Nanocrystalline alloys of the compositions Na 0.05 Cu 1.95 S, Na 0.075 Cu 1.925 S, Na 0.10 Cu 1.90 S, Na 0.125 Cu 1.750 S, Na 0.15 Cu 1.85 S, Na 0.17 Cu 1.80 S, Na 0.20 Cu 1.77 S were synthesized in a melt medium mixtures of hydroxides NaOH and KOH at a temperature of about 165 C. X-ray phase analysis showed that the alloys are heterophasic and consist of phases of Cu 9 S 5 digenite, CuS 2 copper disulfide, Covellite CuS, Cu 7 S 4 anilite in various combinations. The crystallite sizes range from 16 to 160 nm. The degree of crystallinity of the alloys slightly increases with an increase in the sodium content from 68% in Na 0.05 Cu 1.95 S to 81% in Na 0.20 Cu 1.77 S. A quasi-one-dimensional Na 2 Cu 4 S 3 phase was detected in the composition of the Na 0.20 Cu 1.77 S alloy. The measured values of the conductivity of the alloys are two orders of magnitude lower than in isolated pure Cu 9 S 5 , CuS 2 , CuS, Cu 7 S 4 , of which the alloys consist. An activation temperature dependence of the conductivity is observed in the region from 300 K to 360 K with an activation energy of 0.08 - 0.15 eV. The reason for the low conductivity of the alloys is assumed to be the presence of weakly conducting interfacial layers and sodium doping of non-stoichiometric phases Cu 9 S 5 (Cu 1.8 S) and Cu 7 S 4 (Cu 1.75 S), leading to the compensation of holes by electrons of impurity sodium atoms. The measured values of the coefficient of thermo-emf alloys at room temperature lie in the range from 0.032 to 0.147 mV/K. Due to the low thermal conductivity of the order of 0.2 W/mK, a rather high dimensionless thermoelectric figure of merit ZT ≈ 0.28 at 570 K was obtained for the composition       Na 0.15 Cu 1.85 S.
 


KEYWORDS

thermoelectric materials, thermoelectric generators, synthesis, solid chalcogenides, nanopowders.
 


CITED REFERENCES

[1] Y.Q. Tang et al., Crystals 7(141) (2017) 1-10.
[2] L.J. Zheng et al., Alloys and Compounds 722 (2017) 17-24.
[3] Y.-X. Zhang et al., Journal of Alloys and Compounds 764 (2018) 738-744.
[4] Z.-H. Ge et al., Mat. Today Phys. 8 (2019) 71-77.
[5] P. Qiu et al., Energy Storage Materials 3 (2016) 85-97.
[6] H. Liu et al., Nat. Mater. 11 (2012) 422-425.
[7] M.J. Guan et al., Rare Met. 37 (2018) 282-289.
[8] M.Kh. Balapanov et al., Inorganic Materials 50(9) (2014) 930-933.
[9] R.Kh. Ishembetov et al., Rus. J. Electrochem. 47 (2011) 416-419.
[10] X.Y. Li et al., J. Mater. Chem. A. 1(44) (2013) 13721.
[11] Z.H. Ge et al., Adv. En. Mat. 6 (2016) 1600607.
[12] G. Savelsberg, H. Schafer, Materials Research Bulletin 16(10) 1291-1297.
[13] Ju.D. Tret’jakova, Himija perehodnyh jelementov (M.: Izdatel’skij centr «Akademija», 2007) 400 p. (in Russian)
[14] R.W. Potter, Economic Geology 72 (1977) 1524-1542.
[15] E.F. Westrum et al., The Journal of Chemical Thermodynamics 19(11) (1987) 1199-1208.
[16] D.J. Chakrabarti et al., J. Phase Equilibria (1983) 4(3) 254-271.
[17] R.A. Munson et al., The Journal of Chemical Physics 47(5) (1967) 1769-1770.
[18] T.A. Bither et al., Inorganic Chemistry 7(11) (1968) 2208-2220.
[19] G. Dennler et al., Adv. Energy Mater. (2014) 1301581.
[20] E.H. Roseboom, Econ. Geol. 61 (1966) 641-672.
[21] K. Okamoto, Sh. Kawai, Japan Journal of Applied Physics 12(8) (1973) 1130-1138.
[22] G.P. Sorokin and A.P. Paradenko, Izvestiya Vuzov. Fizika (USSR) 5 (1966) 91-95. (in Russian)


Download file Open file