92 citations of the journal in the Russian Science Citation Index | Vol. 4 No 2 was published on June 22, 2020. | Clarivate Analytics | Control Committee in Education and Science of the Republic of Kazakhstan |


A spatial localization of structural degradation areas in the single crystal turbine blades by means of a neutron  tomography method

Number 2_Vol.4

AUTHORS: K.M. Nazarov, S.E. Kichanov, E.V. Lukin, A.V. Rutkauskas, B.N. Savenko

DOI: 10.29317/2020040202

PAGES: 122 - 131

DATE: 2020-06-22


ABSTRACT

The single crystal nickel-based superalloy turbine blades have been studied by means of a neutron tomography method as a non-destructive structural probe. Differences in neutron attenuation coefficients inside volume of metal bodies of the turbine blades have been found. Those observed differences could be associated with inner structural incoherence areas arising in the process of operation of the turbine blades. Applications of special algorithms for a three-dimensional imaging data analysis allow obtaining a spatial distribution of those areas inside the turbine blades and estimate those volumes. To study a temperature evolution of structural incoherence areas, the additional neutron tomography studies of the turbine blades with thermal treatment were performed.


KEYWORDS

turbine blades, superalloys, neutron tomography, three-dimensional reconstruction, image processing.


CITED REFERENCES

[1] A. Czyrska-Filemonowicz et al., Inzynieria Materialowa. 128 (2007) 128.

[2] T. Pollock et al., J. Prop. Pow. 22 (2006) 361.

[3] J.Chen et al., Prog. Nat. Sci. Mat. 20 (2011) 61.

[4] C.Yang et al., Prog. Nat. Sci. Mat. 22 (2012) 407.

[5] S. Peetermans et al., NDT. E. Int. 79 (2016) 109.

[6] P. Caron et al., Math. Sci. and Eng. 61 (1983) 173.

[7] M. Benyoucef et al., Math. Sci. and Eng. 234-236 (1997) 692.

[8] M. Zietara et al., Mater. Charact. 87 (2014) 143.

[9] A. Gaubert et al., Acta Mater. 84 (2015) 237.

[10] M. Jouiad et al., Mater. Sci. Forum 706-709 (2012) 2400.

[11] H. Mughrabi, Mater. Sci. Tech. 25 (2009) 191.

[12] A. Gameros et al., CIRP J. Manuf. Sci. Tec. 9 (2015) 116.

[13] B. Cai et al., Acta. Mater. 76 (2014) 371.

[14] I.S. Anderson, R.L. McGreevy, H.Z. Bilheux, Neutron Imaging and Applications: A Reference for the Imaging Community (New York: Springer, 2009) 338 p. ISBN 978-0-387-78693-3.

[15] E.H. Lehmann et al., Int. J. Mater. Res. 105 (2014) 664.

[16] S. Peetermans et al., J. App. Phys. 114 (2013).

[17] A.V. Rutkauskas et al., J. Surf. Invest.: X-ray, Synchrotron, Neutron Tech. (2015) 317.

[18] D.P. Kozlenko et al., Phys. Part. Nuclei Lett. 13 (2016) 346.

[19] D.P. Kozlenko et al., Phys. Procedia. 69 (2015) 87.

[20] C.A. Schneider et al., Nat. Methods 9 (2012) 671.

[21] R.C. Chen et al., J. Synchrotron Radiat. 19 (2012) 836.

[22] R.P. Dougherty et al., Microsc. Microanal. 13 (2007) 1678.

[23] S.A. Hoseini et al., Proceeding from the Third International Mechanical Engineering Conference, Tehran, Iran, (1998) 947.

[24] R.C. Reed et al., Mater. Sci. Eng. 448 (2007) 88.

[25] X. Huang et al., Pro. Nat. Sci. Mater. 26 (2016) 197.


Download file Open file