103 citations of the journal in the Russian Science Citation Index | Vol. 4 No 3 was published on September 23, 2020. | Clarivate Analytics | Control Committee in Education and Science of the Republic of Kazakhstan |


Study of the strength characteristics and radiation resistance of thin-film coatings based on CuX (X=Bi, Mg, Ni)

Number 3_Vol.4

AUTHORS: D.I. Shlimas, A.L. Kozlovskiy, M.E. Kaliekperov, K.K. Kadyrzhanov, V.V. Uglov

DOI: 10.29317/ejpfm.2020040305

PAGES: 234 - 241

DATE: 2020-09-23


ABSTRACT

The paper presents the results of changes in the strength characteristics of thin-film coatings based on compounds of copper-bismuth, copper-magnesium, copper-nickel. The dependences of the influence of the phase composition on the strength characteristics, such as the coefficient of friction, bending strength and impact coefficient, are established. The effect of irradiation with helium ions with a high radiation dose of 1015 -1017 ion/cm2 on the strength characteristics is evaluated. It is shown that an increase in the radiation dose leads to a decrease in strength properties due to the appearance of a large concentration of defects in the structure.


KEYWORDS

radiation resistant coatings, thin films, radiation defects, strength, resistance to external influences.


CITED REFERENCES

[1] Kumar, Mukesh et al., Nanotechnology 19.17 (2008) 175606.

[2] A. Kozlovskiy et al., Vacuum 164 (2019) 224-232.

[3] Kumar, Ravi et al., Journal of applied physics 100.11 (2006) 113708.

[4] Chou, Wen-Jun et al., Surface and Coatings Technology 149.1 (2002) 7-13.

[5] M. Kaikanov et al., Applied Physics A 125.8 (2019) 555.

[6] M. Kaikanov et al., Journal of Materials Science: Materials in Electronics 30.16 (2019) 15724-15733.

[7] V.Yu. Fominskii et al., Technical Physics 57.4 (2012) 516-523.

[8] M. Kumar et al., Journal of Physics D: Applied Physics 38.4 (2005) 637.

[9] W.C. Oliver et al., Thin Solid Films 153.1-3 (1987) 185-196.

[10] A.L. Kozlovskiy et al., High Energy Chemistry 53.4 (2019) 321-325.

[11] A.L. Kozlovskiy et al., Ceramics International 46.6 (2020) 7970-7976.

[12] R. Sathyamoorthy et al., Solar energy materials and solar cells 90.15 (2006) 2297-2304.

[13] Rani, Sanju et al., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 266.9 (2008) 1987-1992.

[14] Kluth Patrick et al., Physical review letters 101.17 (2008) 175503.

[15] Bolse Wolfgang, Surface and Coatings Technology 158 (2002) 1-7.

[16] V.V. Ison et al., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 262.2 (2007) 209-214.

[17] P. Mallick et al., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268.10 (2010) 1613-1617.

[18] Bolse et al., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 190.1-4 (2002) 173-176.

[19] Patel Shiv P. et al., Solid State Communications 150.25-26 (2010) 1158-1161.

[20] Thomas Senoy et al., Journal of Applied Physics 105.3 (2009) 033910.

[21] W. Bolse et al., Applied Physics A 77.1 (2003) 11-15.

[22] A. Kozlovskiy et al., Vacuum 155 (2018) 412-422.

[23] V.V. Ison et al., Journal of Applied Physics 106.2 (2009) 023508.

[24] R.P. Yadav et al., Chaos: An Interdisciplinary Journal of Nonlinear Science 25.8 (2015) 083115.

[25] S. Chandramohan et al., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 254.2 (2007) 236-242.

[26] A.L. Kozlovskiy, M.V. Zdorovets, Journal of Materials Science: Materials in Electronics 30.12 (2019) 11819-11832.

[27] Bolse, Thunu et al., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 244.1 (2006) 115-119.

[28] H. Rath et al., Journal of Applied Physics 105.7 (2009) 074311.

[29] K. Dukenbayev et al., Materials Research Express 6(4) (2019) 046309.

[30] Kumar et al., Applied surface science 255.18 (2009) 8014-8018.


Download file Open file