103 citations of the journal in the Russian Science Citation Index | Vol. 4 No 3 was published on September 23, 2020. | Clarivate Analytics | Control Committee in Education and Science of the Republic of Kazakhstan |


Obtained of powder coatings by detonation spraying

Number 3_Vol.4

AUTHORS: D.B. Buitkenov, B.K. Rakhadilov, Zh.B. Sagdoldina, M. Maulet

DOI: 10.29317/ejpfm.2020040306

PAGES: 242 - 248

DATE: 2020-09-23


ABSTRACT

In this work, consider the aspects of obtaining powder coatings that possessing certain working properties obtained by detonation spraying. Experimental research were carried on the effect of technological parameters of the detonation spraying process on the phase composition and properties of Ti-Si-C coatings. It is determined that when the volume of filling the detonation barrel with an explosive mixture increases to 70% in the detonation wave flow, the Ti3SiC2 powder partially decomposes into TiC consequently the high-speed shock interaction of heated to high temperatures. Installed that when filling the barrel with an explosive mixture of 50% and 60%, a low extent of decomposition of Ti3SiC2 powder can be achieved. It is determined that an increase in the volume content of the TiC phase in the composition of coatings bring to a decrease in the hardness of the Ti-C-Si coating.


KEYWORDS

detonation spraying, coating, phase, nanohardness.


CITED REFERENCES

[1] V.Y. Ulianitsky et al., Advanced powder Technolog 29 (2018) 1859-1864.

[2] Niu Shaopeng et al., Surface and Coatings Technology 307 (2016) 963-970.

[3] M.M. Student et al., Materials Science 54 (2018) 22-29.

[4] D.V. Dudina et al., Ceramics International 40 (2014) 3253-3260.

[5] V. Ulianitsky et al., Materials and Manufacturing Processes 31 (2016) 1433-1438.

[6] V.Y. Ulianitsky et al., Metals 12 (2019) 1244-1248.

[7] V. Ulianitsky et al., Surface and Coatings Technology 318 (2017) 244-249.

[8] V.Y. Ulianitsky et al., Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk 1(2) (2010) 569. (in Russian)

[9] V.Yu. Ulianitsky et al., Journal of Thermal Spray Technology 20 (2011) 791-801.

[10] D.V. Dudina et al., Intermetallics 29 (2012) 140-146.

[11] V.Yu. Ul’yanitskiy et al., Patent RF 2 400 310 publ. 27.09.2010, bul. 27. (in Russian)

[12] V.Yu. Ulyanitskiy et al., RF Patent 2 399 430 publ. 20.09.2010 bul. 26. (in Russian)

[13] V.Yu. Ul’yanitskiy et al., Novyye materialy i tekhnologii (2015) 8. (in Russian)

[14] V.Yu. Ul’yanitskiy et al., Fizika goreniya i vzryva 2 (2015) 118-124. (in Russian)

[15] I.S. Batrayev et al., Uprochnyayushchiye tekhnologii i pokrytiya 1 (2017) 14-19. (in Russian)

[16] B.K. Rakhadilov et al., Key Engineering Materials (2019) 301-306.

[17] D. Buitkenov et al., Key Engineering Materials 839 (2020) 137-143.

[18] D. Buitkenov et al., Tribologia 5 (2019) 25-32.

[19] D. Buitkenov et al., Eurasian Journal of Physics and Functional Materials 4(1) (2020) 86-92.

[20] B.K. Rakhadilov et al., Materials science 1 (2020) 59-64.

[21] http://tribology.vkgu.kz/

[22] T. Tulenbergenov et al., Nuclear Materials and Energy 13 (2017) 63-67.

[23] B. Rakhadilov et al., Materials Science and Engineering 142 (2016) 1-7.

[24] R. Trache et al., Thermal Spray 2013: Proc. Int. Thermal Spray Conf. ASM International (2013) 74-78.

[25] M.W. Barsoum et al., Journal of Physics and Chemistry of Solids 60 (1999) 429-439.

[26] Y. Zhou et al., Metalls 1(95) (2004) 50-56.


Download file Open file