103 citations of the journal in the Russian Science Citation Index | Vol. 4 No 3 was published on September 23, 2020. | Clarivate Analytics | Control Committee in Education and Science of the Republic of Kazakhstan |


Photoelectric properties of TiO2-GO+Ag ternary nanocomposite material

Number 3_Vol.4

AUTHORS: N.Kh. Ibrayev, A.Zh. Zhumabekov, E.V. Seliverstova

DOI: 10.29317/ejpfm.2020040309

PAGES: 261 - 267

DATE: 2020-09-23


ABSTRACT

A ternary nanocomposite material based on TiO2, graphene oxide and core-shell nanostructures of Ag/TiO2 composition was obtained by a two-step hydrothermal method. The formation of a dual TiO2-GO nanocomposite was confirmed by Raman spectroscopy data, where the nanocomposite spectra contain peaks characteristic of both TiO2 and graphene oxide. Studies of electrophysical characteristics have shown that the addition of plasmon nanoparticles leads to an improvement in the chargetransfer characteristics of the synthesized material. This is due to the fact that the charge transfer resistance of a ternary nanocomposite material TiO2-GO-Ag is noticeably lower than for pure TiO(≈13 times) and TiO2-GO nanocomposite (≈3 times). In addition, the prescence of Ag/TiO2 coreshell nanostructures in the TiO2-GO nanocomposite material leads to an increase in the efficiency of conversion of incident light into photocurrent, which will be resulted in the growth of photocatalytic activity of synthesized materials.


KEYWORDS

titanium dioxide, graphene oxide, TiO 2 -GO, ternary nanocomposite material, impedance spectra.


CITED REFERENCES

[1] K. Sasan et al., Nanoscale 7 (2015) 13369-13372.

[2] O. Oluwafunmilola, M. Maroto-Valer, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 24 (2015) 16-42.

[3] A. Mills, S. Hunte, Journal of Photochemistry and Photobiology A: Chemistry 108 (1997) 1-35.

[4] P.V. Kamat, Journal Physics Chemistry Letters 242 (2011) 242-251.

[5] M. Ikram et al., Current Applied Physics 15 (2015) 48-54.

[6] X. Wang et al., Nano Letters 8 (2008) 323-327.

[7] M. Ikram et al., Mater. Res. Bull. 75 (2015).

[8] Z. Zhang et al., J. Phys. Chem.: B 102 (1998) 10871-10878.

[9] Q. Li et al., J. Am. Chem. Soc. 133 (2011) 10878-10884.

[10] P.K. Dubey et al., Int. J. Hydrogen energ. 39 (2014) 16282-16292.

[11] L.Y. Ozer et al., J. Photochem. and Photobiol. C: Photochem. Rev. 33 (2017) 132-164.

[12] A.Zh. Zhumabekov et al., Theoretical and Experimental Chemistry 55 (2020) 398-406.

[13] A.Zh. Zhumabekov et al., Bulletin of the University of Karaganda-Physics 93 (2019) 54-60.

[14] H. Zhang et al., J. Li ACS Nano 4 (2010) 380-386. .

[15] G. Williams et al., ACS Nano 2 (2008) 1487-1491.

[16] M. He et al., Jour. Materials Chem. 22 (2012) 24254-24264.

[17] J.D. Roy-Mayhew et al., ACS Nano 4 (2010) 6203-6211.

[18] Q.B. Zheng et al., Carbon 49 (2011) 2905-2916.

[19] J. Zhang et al., Environmental Technology (2019) 1-13.

[20] S. Sreeja, K. Vidya Shetty, Environ. Sci. Pollut. Res. 23 (2016) 18154-18164.

[21] T. Wang et al., Physica E 112 (2019) 128-136.

[22] N.Kh. Ibrayev et al., Material Research Express 6 (2019) 1-11.

[23] D.A. Afanasyev et al., Russ. Jour. Phys. Chem. A. 90 (2016) 833-837.

[24] V. Swamy et al., Phys. Rev. B 71 (2005) 184302-12.

[25] W. Zhang et al., Angew. Intern. Edit. Chem. 48 (2009) 5864-5868.

[26] B. Zhang et al., J. Sci. Rep. 3 (2013) 1836-1843.


Download file Open file