Study of structural and electronic properties of intercalated CrTiS2 compound by density functional theory


Number 2_Vol.5

AUTHORS: V.B. Parmar, A.M. Vora

DOI: 10.32523/ejpfm.2021050204

PAGES: 116 - 125

DATE: 2021-06-22


ABSTRACT

In the present paper, we report the structural optimization of intercalated CrTiS2 compound by using Density Functional Theory (DFT) with Generalized Gradient Approximation (GGA) through Quantum ESPRESSO code. All the computations are carried out by using an ultra-soft pseudopotential. The effect of charge transfer from guest 3d transition metal Cr-atom to self-intercalated compound TiS2 has been studied. In electronic properties, the energy band structure, total density of states (TDOS), partial density of states (PDOS) and Fermi surface have carried out. From the energy band structure, we conclude that the TiS2 -intercalated compound has a small bandgap while the doped compound with guest Cr-atom has metallic behavior as shown form its overlapped band structure.


KEYWORDS

Density Functional Theory (DFT), Generalized Gradient Approximation (GGA), intercalated compound, density of  states, energy band structre, Fermi surface


CITED REFERENCES

[1] N. Suzuki et al., J De Physique, Solid State Phys. C 8 (1998) 49201.

[2] T. Matsushita et al., Phys. Rev. B 60 (1999) 1678.

[3] Y. Ueda et al., Solid State Comm. 57 (1986) 839.

[4] Y-S. Kim et al., Mat. Trans. Jim. 8 (2000) 1088.

[5] Q. Yan-Bin et al., Phys. Lett. 24 (2007) 1050.

[6] Y. Sharma et al., Adv. Mater. Lett. 6(4) (2015) 294-300.

[7] V.B. Zala et al., AIP Conference proceedings 2100 (2019) 020027.

[8] V.A. Dabhi et al., AIP Conference Proceedings 2224(1) (2020) 030003.

[9] H.S. Patel et al., Springer proceedings in physics 236 (2019) 389-395.

[10] H.S. Patel et al., AIP Conference Proceedings 2224(1) (2020) 030006.

[11] V.B. Parmar and A.M. Vora, East Eur. J. Phys. 1 (2021) 93-98.

[12] T. Yamasaki et al., J. Phys. C: Solid State Phys. 20 (1987) 395.

[13] P. Giannozzi et al., J. Phys. Condens. Matter 21 (2009) 395502.

[14] J.P. Perdew et al., Phys. Rev. B 48 (1993) 4978.

[15] J.P. Perdew et al., Physical Review Letters 77 (1996) 3865.

[16] http://www.quantum-espresso.org/pseudopotential.

[17] P.K. Janert, Gnuplot in action: understanding data with graphs.

[18] P.K. Janert, Journal of cheminformatics 3 (2011) 1.

[19] A. Kokalj, Journal of Molecular Graphics and Modelling 17 (1999) 176-179.

[20] C.M. Fang et al., Phys. Rev. B 56 (1997) 4455.

[21] Q. Yan-Bin et al., Phys. Lett. 24 (2007) 1050.

[22] W. Kohn and L.J Sham, Phys Rev. A140 (1965) 1133.


Download file Open file