Study of gamma radiation shielding efficiency by 0.5TeO2-(0.5-x)Bi2O3-xWO3 glasses


Number 2_Vol.5

AUTHORS: A. Temir, K.Sh. Zhumadilov, A. Kozlovskiy, A. Smagulova, D.I. Shlimas, A.V. Trukhanov

DOI: 10.32523/ejpfm.2021050205

PAGES: 126 - 132

DATE: 2021-06-22


ABSTRACT

This article is devoted to the study of determination of gamma radiation shielding efficiency by new radiation-resistant glasses of the 0.5TeO2-(0.5-x)Bi2O3-xWO3 type. As a method of obtaining glasses, the method of solid-phase synthesis combined with thermal annealing and subsequent hardening was used. The amorphous nature of the synthesized samples was confirmed by X-ray phase analysis. Determination of the shielding efficiency, as well as the effect of Bi2O3 and WO3 content in the glass composition on the attenuation efficiency was carried out by evaluation of gamma radiation intensities from the 137Cs source, with a gamma ray energy of 661 keV. The evaluation was performed on parameters such as radiation protection efficiency, linear and mass attenuation coefficients, half-value layer and mean free path. During the studies, it was found that glasses of the following composition 0.5TeO2-0.1Bi2O3-0.4WO3 are most effective, which are 1.3-2 times higher than those of the composition 0.5TeO2-0.4Bi2O3-0.1WO3.


KEYWORDS

glasses, radiation protection efficiency, mean free path, half-value layer, TeO2-Bi2O3-WO3


CITED REFERENCES

[1] E. Schmid et al., Journal of Radiological Protection 32(3) (2012) N129.

[2] Yue Kun et al., Radiation protection dosimetry 133(4) (2009) 256-260.

[3] N.J. AbuAlRoos et al., Radiation Physics and Chemistry 165 (2019) 108439.

[4] H.M. Soylu et al., Journal of Radioanalytical and Nuclear Chemistry 305(2) (2015) 529-534.

[5] M. Alwaeli, Journal of Cleaner Production 166 (2017) 157-162.

[6] H. Algarni et al., Science of Advanced Materials 10(6) (2018) 818-826.

[7] M.E. Camilo et al., Thin solid films 571 (2014) 225-229.

[8] M.Y. Hassaan et al., Journal of Materials and Applications 9(1) (2020) 46-54.

[9] Al-Buriahi et al., Radiation Physics and Chemistry 166 (2020) 108507.

[10] Tonguc Baris T. et al., Radiation Physics and Chemistry 153 (2018) 86-91.

[11] Al-Buriahi et al., Indian Journal of Pure & Applied Physics (IJPAP) 57(6) (2019) 433-437.

[12] Al-Buriahi et al., Journal of the Australian Ceramic Society 56(3) (2020) 1127-1133.

[13] G. Lakshminarayana et al., Applied Physics A 126(3) (2020) 1-18.

[14] M.S. Al-Buriahi et al., Ceramics International 46(10) (2020) 15464-15472.

[15] M.S. Al-Buriahi et al., Materials Research Express 7(2) (2020) 025202.

[16] M.S. Al-Buriahi and Y.S. Rammah, Radiation Physics and Chemistry 170 (2020) 108632.

[17] A. Temir et al., Solid State Sciences (2021) 106604.

[18] A.L. Kozlovskiy and M.V. Zdorovets, Materials Chemistry and Physics 263 (2021) 124444.

[19] S. Stalin et al., Ceramics International 47(4) (2021) 5286-5299.

[20] T.N. Nurakhmetov et al., Eurasian Journal of Physics and Functional Materials 5(1) (2021) 24-30.

[21] L. Aleksandrov et al., Journal of Chemical Technology and Metallurgy 50(4) (2015) 429-434.

[22] D.N. Kakimzhanov et al., Eurasian Journal of Physics and Functional Materials 5(1) (2021) 45-51.

[23] M. Celikbilek et al., Journal of non-crystalline solids 378 (2013) 247-253.

[24] A.S. Rysbaev et al., Eurasian Journal of Physics and Functional Materials 4(1) (2020) 50-60.

[25] A. Temir et al., Optical Materials 115 (2021) 111037.

[26] M.I. Sayyed, Canadian journal of physics 94(11) (2016) 1133-1137.

[27] H.O. Tekin et al., Radiation Physics and Chemistry 150 (2018) 95-100.

[28] G. Pal Singh and D.P. Singh, Canadian Journal of Physics 89(12) (2011) 1281-1285.

[29] A. Temir et al., Optical Materials 113 (2021) 110846.

[30] D.K. Gaikwad et al., Materials Chemistry and Physics 213 (2018) 508-517.


Download file Open file