The influence of pulse-plasma treatment on the phase composition and hardness of Fe-TiB2-CrBcoatings


Number 2_Vol.5

AUTHORS: A.B. Kengesbekov, B.K. Rakhadilov, Yu.N. Tyurin, N.M. Magazov, M.K. Kylyshkanov, Zh.B. Sagdoldina

DOI: 10.32523/ejpfm.2021050209

PAGES: 155 - 162

DATE: 2021-06-22


ABSTRACT

This work are presented the research results of pulse plasma treatment influence on the phase composition, hardness, roughness and element composition of coatings on the bases of Fe-TiB2-CrB2. The Fe-TiB2-CrB2 coating was deposited by detonation method. The following pulse-plasma treatment was used to modify the structure and properties of the surface layers of the sprayed coating. The results of mechanical experiments showed that the hardness of Fe-TiB2-CrB2 coating increased after the treatment. On the basis of the X-ray analysis, it has been established that the increase of coating hardness is connected with phase transformations in a surface layer, in particular, with formation of oxide phases and increase of carbide particles quantity.


KEYWORDS

coating, detonation spraying, pulse-plasma treatment, hardness


CITED REFERENCES

[1] O.V. Maksakova et al., Materials Research Express 6(10) (2019) 106438.

[2] B. Rakhadilov et al., Coatings 11(2) (2021) 1-14, 218.

[3] V.E. Panarin et al., Aviacionno-kosmicheskaya tekhnika i tekhnologiya (2016) 15-20. (in Russian)

[4] M. Pashechko et al., Lubelskie Towarzystwo Naukowe (2001) 379-387.

[5] M. Pashechko et al., Zeszyty Budowa Maszyn (2009) 125-127.

[6] A.K. Shurin et al., Metallovedenie i termicheskaja obrabotka metallov 8 (1977) 53-55. (in Russian)

[7] M.V. Kindrachuk et al., Metallovedenie i obrabotka metallov 1 (1995) 38-45. (in Russian)

[8] B. Dastan et al., Key Engineering Materials 839 (2020) 137-143.

[9] Lei Guo et al., Journal of Advanced Ceramics 9(2) (2020) 232-242.

[10] M. Skakov et al., Key Engineering Materials 531-532 (2013) 627-631.

[11] Yu.N. Tyurin and O.V. Kolisnichenko, The Open Surface Science Journal (2009) 13-19.

[12] M.G. Kovaleva et al., Journal of Nano- and Electronic Physics 10(6) (2018) 06035-1-06035-4.

[13] D.N. Kakimzhanov et al., Eurasian Journal of Physics and Functional Materials 5(1) (2021) 45-51.

[14] V.A. Okovityj et al., Vestnik Belorusskogo nacional’nogo tekhnicheskogo universiteta: nauchno-tekhnicheskij zhurnal 5 (2009) 38-43. (in Russian)

[15] A. Kumar et al., Materials Today: Proceedings 39(4) (2021) 1291-1295.

[16] V.E. Panarin, Aviacionno-kosmicheskaya tekhnika i tekhnologiya 8 (2014) 108-112. (in Russian)


Download file Open file