Unusual metallic conductivity of high-Tc cuprates

Number 3_Vol.5

AUTHORS: S. Dzhumanov, Sh.R. Malikov, Sh.S. Djumanov

DOI: 10.32523/ejpfm.2021050303

PAGES: 183 - 191

DATE: 2021-09-22


The intrinsic mechanisms of the unusual metallic transports of three types of relevant charge carriers (large polarons, excited (dissociated) polaronic components of bosonic Cooper pairs and bosonic Cooper pairs themselves) along the CuO2 layers of high-Tc cuprates are identified and the new features of metallic conductivity in the CuO2 layers (i.e. ab -planes) of underdoped and optimally doped cuprates are explained. The in-plane conductivity of high-Tc cuprates is associated with the metallic transports of such charge carriers at their scattering by lattice vibrations in thin CuO2 layers. The proposed charge transport theory in high-Tc cuprates allows to explain consistently the distinctive features of metallic conductivity and the puzzling experimental data on the temperature dependences of their in-plane resistivity pab. In underdoped and optimally doped cuprates the linear temperature dependence of pab(T) above the pseudogap formation temperature T is associated with the scattering of polaronic carriers at acoustic and optical phonons, while the different (upward and downward) deviations from the linearity in pab(T) below T are caused by the pseudogap effect on the conductivity of the excited Fermi components of bosonic Cooper pairs and by the dominating conductivity of bosonic Cooper pairs themselves in the normal state of these high-Tc materials.


cuprate high-temperature superconductors, polarons, pseudogap effect, bosonic Cooper pairs, unusual metallic conductivity


[1] Timusk T. Statt B., Rep. Prog. Phys. 62 (1999) 61.

[2] P.A. Lee et al., Rev. Mod. Phys. 78 (2006) 17.

[3] P. Phillips et al., Rev. Mod. Phys. 82 (2010) 1719.

[4] S.I. Vedeneev, Usp. Fiz. Nauk 182 (2012) 609.

[5] P.W. Anderson, The theory of superconductivity in the high-Tc cuprates (Princeton: Princeton University Press, 1997) 352 p.

[6] C.M. Varma et al., Phys. Rev. Lett. 63 (1989) 1996.

[7] B.P. Stojkovi˙c et al., Phys. Rev. B 55 (1997) 8576.

[8] X. Dai et al., Phys. Rev. B 56 (1997) 5583.

[9]. V.Z. Kresin and S.A. Wolf, Rev. Mod. Phys. 81 (2009) 481.

[10] J.T. Devreese and A.S. Alexandrov, Rep. Prog. Phys. 72 (2009) 066501.

[11] S. Sugai et al., Physica C 185-189 (1991) 76.

[12] M.A. Kastner et al., Rev. Mod. Phys. 70 (1998) 897.

[13] S. Dzhumanov et al., Phys. Lett. A. 380 (2016) 2173.

[14] S. Dzhumanov et al., Physica B 440 (2014) 17.

[15] A.A. Abrikosov, Foundations of the theory of metals (M.: Nauka, 1987) 402 p. (in Russian)

[16] R.V. Vovk et al., Superconducting. Sci. Technol. 26 (2013) 085017.

[17] D.J.C. Walker et al., Physica C 235-240 (1994) 1335.

Download file Open file