Influence of plasma electrolytic hardening modes on the structure and properties of 65G steel


Number 3_Vol.5

AUTHORS: B.K. Rakhadilov, R.S. Kozhanova, D. Baizhan, L.G. Zhurerova, G.U. Yerbolatova, A.A. Kalitova, L.N. Zhanuzakova

DOI: 10.32523/ejpfm.2021050306

PAGES: 209 - 221

DATE: 2021-09-22


ABSTRACT

This work presented a study of the structure, hardness and wear resistance of 65G steel treated with electrolyte-plasma hardening under different conditions. The electrolyte-plasma hardening technology and a laboratory installation for the realisation of electrolyte-plasma hardening are also described. After electrolyte-plasma hardening, we have established that a modified layer consists of the a-phase (martensite) and M3C cementite. The study results showed that electrolyte-plasma hardening makes it possible to obtain layers on the 65G steel surface that provides an increase in microhardness by 2.6 times, wear resistance by two times, resistance to abrasive wear by 1.7 times compared to the original samples. In addition, local hardening ensures the achievement of technical and economic effects due to the absence of the need to isolate an unwanted site of parts, processing only the areas requiring hardening.


KEYWORDS

structure, phase composition, plasma electrolytic hardening, microhardness, wear resistance


CITED REFERENCES

[1] F. Yulei et al., Nuclear Instruments and Methods in Physics Research B 410 (2017) 207-214.

[2] L. Wang et al., Materials Science and Engineering A 359 (2003) 31-43.

[3] B.V. Vladimirov et al., Surf. Eng. Appl. Electrochem. 50(3) (2014) 1-38.

[4] E.I. Meletis et al., Surf. Coat. Technol. 150 (2002) 246-256.

[5] S. Mazhyn et al., Advanced Materials Research 1040 (2014) 753-758.

[6] M. Tarakci et al., Surf. Coat. Technol. 199(2-3) (2005) 205-212.

[7] S.A. Kusmanov et al., Surf. Coat. Technol. 258 (2014) 727-733.

[8] P. Taheri et al., Plasma Process. Polym. 4 (2007) 711-716.

[9] L.G. Zhurerova et al., Journal of Materials Research and Technology 9(1) (2020) 78-85.

[10] P. Taheri et al., Plasma Process. Polym. 4 (2007) 721-727.

[11] B.K. Rakhadilov et al., IOP Conf. Series: Mat. Science and Engineering 142 (2016) 1-7.

[12] B.K. Rakhadilov et al., Journal of Materials Research and Technology 9(4) (2020) 6969-6976.

[13] H. Zhang et al., Surface Engineering 19(2) (2003) 134-136.

[14] I.V. Suminov et al., M: Technosphere 1 (2011) 464.

[15] GOST (State Standard) 9450-76: Measurements microhardness by diamond instruments indentation (Moscow: Izd. Standartov, 1976) 34 p. (in Russian)

[16] W.C. Oliver et al., Journal of Materials Research 7(6) (1992) 1564-1583.

[17] V.K. Grigorevich, Hardness and microhardness of metals (Nauka, Moscow, 1976) 230 p.

[18] O.I. Khomutov et al., Polzunovsky Almanac 1-2 (2001) 10-19.

[19] V.A. Lobodyuk et al., Metallurgical and Materials Transactions A 50 (2019) 97-103.

[20] Yu.P. Raizer et al., Advances in physical sciences 108(3) (1972) 429-461.

[21] B.R. Lazarenko et al., Electronic processing of materials 2 (1980) 50-55.

[22] J. Huang et al., Surface and Coatings Technology 347 (2018) 76-83.


Download file Open file