Features of model thin-film solar cells photoelectric characteristics based on a non-toxic multi-component connection
CuZn2AlS4


Number 3_Vol.5

AUTHORS: D. Sergeyev, K. Shunkeyev, B. Kuatov, N. Zhanturina

DOI: 10.32523/ejpfm.2021050309

PAGES: 242 - 250

DATE: 2021-09-22


ABSTRACT

In this paper, the features of the characteristics of model thin-film solar cells based on the non-toxic multicomponent compound CuZn2AlS4 (CZAS) are considered. The main parameters (open-circuit voltage, short-circuit current, fill factor, efficiency) and characteristics (quantum efficiency, current-voltage characteristic) of thin-film solar cells based on CZAS have been determined. The minimum optimal thickness of the CZAS absorber is found (1-1.25 microns). Deterioration of the performance of solar cells with an increase in operating temperature (280-400 K) is shown. It is revealed that in the wavelength range of 390-500 nm CZAS has a high external quantum efficiency, which allows its use in designs of multi-junction solar cells designed to absorb solar radiation in the specified range. It is shown that the combination of CZAS films with a buffer layer of non-toxic ZnS increases the performance of solar cells.


KEYWORDS

thin film solar cell, CuZn2AlS4 (CZAS), electrical properties, quantum efficiency, SCAPS


CITED REFERENCES

[1] Y. Zhang et al., Solar Energy Materials and Solar Cells 225 (2021) 111073.

[2] M. Bello et al., Journal of Alloys and Compounds 839 (2020) 155510.

[3] M. Hadadian et al., Energy and Environmental Science 13 (2020) 1377-1407.

[4] N. Ali et al., Materials Science in Semiconductor Processing 107 (2020) 104810.

[5] I. Kaulachs et al., Latvian Journal of Physics and Technical Sciences 1 (2021) 53-69.

[6] X. Zeng et al., Optics Letters 46 (2021) 2288-2291.

[7] W. Witte et al., ECS Journal of Solid State Science and Technology 10 (2021) 055006.

[8] H. Yang et al., Materials 14 (2021) 2413.

[9] S. Ishizuka et al., Journal of Applied Physics 106 (2009) 034908.

[10] P. Reinhard et al., Solar Energy Materials and Solar Cells 119 (2013) 287-290.

[11] A. Kumar et al., Superlattices and Microstructures 153 (2021) 106872.

[12] J. Xu et al., Materials 115 (2021) 111034.

[13] G. Anima et al., New Journal of Chemistry 40 (2016) 1149-1154.

[14] G.F. Novikov et al., Phys. Usp. 60 (2017) 161-178.

[15] R. Jacob et al., Phys. Status Solidi A 209 (2012) 2195-2200.

[16] M. Burgelman et al., Thin Solid Films 361-362 (2000) 527-532.

[17] K. Decock et al., Journal of Applied Physics 111 (2000) 043703.

[18] M. Burgelman et al., Thin Solid Films 535 (2000) 296-301.

[19] K. Decock et al., Thin Solid Films 519 (2011) 7481-7484.

[20] V.A. Milichko et al., Phys. Usp. 59 (2016) 727-772.


Download file Open file