The upcoming issue of Vol. 2 No 4 will be published on December 24-25, 2019. | 11 articles were submitted, 9 articles were accepted, 2 articles were rejected | Clarivate Analytics | Higher Attestation Commission of Russia | Control Committee in Education and Science of the Republic of Kazakhstan |


Reactions 11B+209Bi at energies above Coulomb barrier

Number 1_Vol.2

AUTHORS: N. A. Demekhina, A. R. Balabekyan, Yu. E. Penionzhevich, N. K. Skobelev, S. M. Lukyanov, V. Burjan

DOI: 10.29317/ejpfm.2018020101

PAGES: 06 - 16

DATE: 2018-03-26


ABSTRACT

Experimental data on production of radioactive residuals in 11B +209Bi reaction a above-barrier projectile energy of 145.6 MeV are presented. The measurements and identification of reaction products were made using the method of induced activity. The residual nuclei in 24≤A≤211 mass range are considered as products of different interaction channels, occurring through evaporation at complete, incomplete fusion and the fission. The fragments in (60-160) atomic mass units range are regarded to the fission products and are confirmed with data from experiments with analogous fissile nuclei. The residual nuclei near target mass number can be presented as result of the different processes including emission of nucleons and light nuclei. Theoretical predictions within the frameworks of PACE-4 code simulation, allowing the predictions of formation, evaporation and fission of compound nuclei, were used for analyzing the measurement results. A substantial contribution to production of residual nuclei of the incomplete fusion and of additional mechanisms, proceeding at different impact parameters, were revealed at analysis of the experimental data.


KEYWORDS

Cross section, break-up, fusion and fission reactions.


CITED REFERENCES

[1] P.R. Gomes et al., Phys. Rev. C 84 (2011) 014615.

[2] N.K. Skobelev et. al., Phys. Part. Nucl. Lett. 10 (2013) 248.

[3] L.R. Gasques et al., Phys. Rev. C 79 (2009) 034605.

[4] P.P. Singh et al., Phys. Rev. C 77 (2008) 014607.

[5] H. Morgenstern et al., Phys. Rev. Lett. 52 (1984) 1104.

[6] A. Yadov et al., Phys. Rev. C 85 (2012) 034614.

[7] V.E. Viola et al., Phys.Rev.C and references there in 28 (1982) 178.

[8] A.A. Souzongui et al., Phys. Rev. C 53 (1996) 243.

[9] J. Wilczynski, Nucl. Phys. A 216 (1973) 386.

[10] T. Sikkeland, Phys. Rev. B 135 (1964) 669.

[11] R. Bass, Nucl. Phys. A 231 (1974) 45.

[12] H. Marshall Blann, Phys .Rev. 123 (1961) 1356.

[13] K. Kalita, Jour. Phys G. 38 (2011) 095104.

[14] A.N. Andreev et al.,Nucl. Phys. A 229 (1997) 620.

[15] Ch. Egelhaaf et al., Nucl. Phys. A 405 (1983) 397.

[16] S.S. Rattan et al., J. Inorg. Nucl. Chem. 242 (1999) 551.

[17] S.Y.F. Chu et al., The Lund /LBNL Nuclear Data Search, 1999.

[18] N.A .Demekhina and G.S. Karapetyan, Phys. At. Nucl. 71 (2008) 27.

[19] I.V. Pokrovskij et al., Phys. Rev C 60 (1999) 041304.

[20] H. Kudo et al., Phys. Rev. C 57 (1998) 178.

[21] C.L. Brangaihno and V.J. Robinson, J. Inorg. Nucl. Chem. 39 (1977) 921.

[22] R.N. Sagaidak et al., Phys. Rev. C 68 (2003) 014603.

[23] S.S. Rattan et al., J. Radioanal. Nucl. 242 (1999) 551.

[24] S.E. Vigdor et al., Phys. Rev. C 26 (1982) 1035.

[25] S.S. Ratan et al., Radiochemica Acta 57 (1992) 7.

[26] M. Veselcky et al., Z. Phys. A 356 (1997) 403.

[27] Sh. A. Kalandarov et al., Phys. El. Part. Nucl. 43 (2012) 1591.

[28] Sh. A. Kalandarov et al., Phys. El. Part. Nucl. 26 (1982) 1035.

[29] D. Gardess et al., Phys. Rev. 18 (1978) 1298.

[30] S. Wild et al., Phys. Rev. C 32 (1985) 894.

[31] Y. Eyal et al., Phys. Rev. C 8 (1973) 1109.

[32] A. Gavron, Phys. Rev. C 21 (1980) 230.

[33] C. Birattari et al., Phys. Rev.C 54 (1996) 3051.

[34] E. Gadioli et al., Eur, Phys. J. A 11 (2001) 161.

[35] E. Gadioli et al., Nucl. Phys. A 708 (2002) 391.

[36] D.J. Fields et al., Phys.Rev.C 30 (1984) 1912.


Download file Open file