The upcoming issue of Vol. 2 No 4 will be published on December 24-25, 2019. | 11 articles were submitted, 9 articles were accepted, 2 articles were rejected | Clarivate Analytics | Higher Attestation Commission of Russia | Control Committee in Education and Science of the Republic of Kazakhstan |


Temperature Dependent Hadronic Bag and QGP Phase Transition in Dual QCD

Number 1_Vol.2

AUTHORS: G. Punetha, H.C. Chandola

DOI: 10.29317/ejpfm.2018020108

PAGES: 68 - 76

DATE: 2018-03-26


ABSTRACT

Based on the magnetic symmetry structure of non-Abelian gauge theories, a dual QCD gauge theory has been constructed which takes into account the local structure as well as the topological features of the color gauge group into its dynamics in a completely dual-symmetric way. Using such dual version of QCD in thermal domain following the partition function approach and the grand canonical ensemble formulation, the phase transition from hadron to QGP phase has been investigated within the framework of temperature dependent hadronic bag in the entire T − µ plane. The various thermodynamic properties like pressure, energy density, speed of sound and specific heat of the hadron/QGP phase have been evaluated and shown to lead an evidence for the first order phase transition. In the region around Tc < T < 4Tc , the specific heat and speed of sound are strongly influenced by the magnetically charged particles directly related to thermal monopoles evaporating from the magnetic condensate present at low temperature.


KEYWORDS

Dual QCD, thermal bag, phase transition, QGP


CITED REFERENCES

[1] D.J. Gross and F. Wilczek, Phys. Rev. Lett. 30 (1973) 1343.

[2] H. Hinchliffe, Phys. Rev. D. 50 (1994) 1177.

[3] K. Abbe et al., Phys. Rev. D. 51 (1995) 962.

[4] H.D. Politzer, Phys. Rev. Lett. 30 (1973) 1346.

[5] M. Gyulassy and L. McLerran, Nucl. Phys. A. 750 (2005) 30.

[6] P.N. Batyuk et al., Phys. of Part. and Nucl. 47 (2016) 540.

[7] V. Golovatyuk et al., Jour. of Phys.: Conf. Series 668 (2016) 012015.

[8] A. Adare, PHENIX Collaboration, Phys. Rev. C. 87 (2013) 034911.

[9] B. Abelev, STAR Collaboration, Phys. Rev. C. 80 (2009) 044905.

[10] B. Abelev, ALICE Collaboration, Phys. Lett. B. 719 (2013) 18.

[11] G. Aad, ATLAS Collaboration, Phys. Lett. B. 707 (2012) 330.

[12] S. Chatrchyan, CMS Collaboration, Eur. Phys. J. C. 72 (2012) 1945.

[13] P. Huovinen and P. Petreczky, Nucl. Phys. A. 837 (2010) 26.

[14] C. Ratti et al., Nucl. Phys. A. 855 (2011) 253.

[15] S. Plumari et al., Phys. Rev. D. 84 (2011) 094004.

[16] S. Borsanyi et al., JHEP 01 (2012) 138.

[17] M. Cheng et al., Phys. Rev. D. 81 (2010) 054504.

[18] A. Chodos et al., Phys. Rev. D. 9 (1974) 3471.

[19] Y.M. Cho, Phys. Rev. D. 21 (1980) 1080.

[20] Y.M. Cho, Phys. Rev. D. 23 (1981) 2415.

[21] Y.M. Cho et al., Phys. Rev. D. 87 (2013) 085025.

[22] N. Cundy et al., Phys. Lett. B. 729 (2014) 192.

[23] Y.M. Cho et al., Phys. Rev. D. 91 (2015) 114020.

[24] N. Cundy et al., Nucl. Phys. B. 895 (2015) 64.

[25] Y. Duan and M. Ge, Sci. Sin. 11 (1979) 1072.

[26] L. Faddeev and A.J. Niemi, Phys. Rev. Lett. 82 (1999) 1624.

[27] L. Faddeev and A.J.Niemi, Nucl. Phys. B. 776 (2007) 38.

[28] S.V. Shabanov, Phys. Lett. B. 463 (1999) 263.

[29] H.C. Pandey and H.C.Chandola, Phys. Lett. B. 476 (2000) 193.

[30] H.C. Chandola et al., Int. J. Mod. Phys. A. 20 (2005) 2743.

[31] H.C. Chandola, D.Yadav, Nucl. Phys. A. 829 (2009) 151.

[32] H.C. Chandola, P. Garima, H. Dehnen, Nucl. Phys. A. 945 (2016) 226.

[33] G. Punetha and H.C. Chandola, Europhysics Lett. A. 116 (2016) 11001.

[34] A. D’Alessandro and, M. D’Elia, Nucl. Phys. B. 799 (2008) 241.

[35] A. D’Alessandro et al., Phys. Rev. D. 81 (2010) 094501.

[36] V.G. Bornyakov et al., Phys. Rev. D. 85 (2012) 014502.

[37] V.V. Braguta and A. Yu.Kotov, Phys. Rev. D. 86 (2012) 014511.

[38] J. Liao and E.Shuryak, Phys. Rev. Lett. 109 (2012) 152001.

[39] S. Lin et al., Phys. Lett. B. 730 (2014) 236.


Download file Open file